DLF Science Advisory Board Spotlight
Dan Lewis Foundation | Spring 2024

Graham Dempsey, Ph.D., is a founder and Chief Scientific Officer (CSO) at Quiver Bioscience, a Cambridge, Massachusetts-based biotechnology company focused on the development of medicines for disorders of the nervous system. Dr. Dempsey and his team are working to develop treatments for some of the most challenging unsolved medical issues patients and their families face. Using advanced technologies in human stem cell biology, optogenetics, machine learning, and drug screening, progress is being made to develop medicines that will one-day treat conditions that have been largely untreatable. As the lead scientist for Quiver, formerly Q-State Biosciences, Dr. Dempsey enjoys working with world-class teams to invent, develop, and apply cutting-edge technologies to solve the most difficult challenges in biopharma for the betterment of patients.

 

Dr. Dempsey’s inspiration to dedicate his professional life to science and medicine started at the early age of seven with the tragic loss of his father to an aggressive form of cancer, an experience that has deeply motivated him to this day. He completed his undergraduate studies at the University of Pennsylvania and his doctorate at Harvard University. As a graduate student in the biophysics program at Harvard Medical School, he co-developed ‘Stochastic Optical Reconstruction Microscopy’ or STORM, a light microscope with the ability to resolve nanometer (billionth of a meter, e.g. a hair is 100,000 nanometers thick) scale details of biological materials, an achievement that had been thought to be impossible for over a century. STORM has enabled what researchers call ‘super-resolution imaging’ for visualizing the intricate details of life’s most fundamental unit, the cell. Understanding the inner workings of a cell provides a path to a deeper understanding of the ways in which life is constructed and diseases can manifest. The technology was commercialized by Nikon Instruments for researchers worldwide. 


Dr. Dempsey left academic science to join Q-State Biosciences as the first hired employee with the goal of bringing advanced technologies developed at Harvard to the study of the brain. The brain, arguably the most complex structure in the known universe, works through electrical communication between brain cells or neurons. This communication is disrupted in all brain disorders but has been near impossible to study for the purposes of effectively developing medicines. Dr. Dempsey and his team over the course of ten years built a technology system that creates human brain models from patient stem cells (i.e. a ‘disease-in-a-dish’) and converts electrical activity of those brain cells into light signals that can be detected with ultra-sensitive microscopes. The resulting signals are analyzed using machine learning to find the patterns of how electrical activity is altered in disease, which can be used to find medicines that correct those changes. The team at Quiver is deploying this technology to take on previously untreatable brain conditions, including rare genetic diseases, such as certain seizure and neurodevelopmental disorders, to common conditions, such as chronic pain and Alzheimer’s disease.


Dr. Dempsey’s passion outside of science starts with his family, his wife (and high school sweetheart) and three young daughters, be it traveling the globe to experience new cultures (or simply stare at the ocean), cooking elaborate meals on a Saturday evening, night-time reading of novels to his daughters, or attending live music around Boston. As a native of NJ, he celebrates his roots with visits to family near the Jersey Shore and, whenever possible, attendance at Springsteen concerts and Giants games. Dr. Dempsey is an avid student of history’s great entrepreneurs, spending the sparse remaining minutes of the day reading biographies and listening to podcasts, looking to extract every bit of learning towards taking on the challenges of building a great business while staying true to his family, his Quiver teammates, and his professional mission.

The word arpah is written in blue letters on a white background.
By Dan Lewis Foundation July 31, 2025
On July 10, 2025, the Advanced Research Projects Agency for Health (ARPA-H) announced a major initiative titled Functional Repair of Neocortical Tissue or FRONT. The announcement states “FRONT will pioneer a curative therapy for the more than 20 million adults in the US living with chronic neocortical brain damage from neurodegeneration, stroke, trauma, and other causes, which costs the country an estimated $800 billion per year. Worldwide, more than 200 million people live with debilitating after-effects of brain damage.”  A set of informational meetings about this program and a due date for outlines of potential proposals have been set for August. Full proposals are due by September 25, 2025. Complete instructions, specifications, and expectations are delineated in the ARPA-H FRONT announcement. The FRONT announcement includes a clear expectation that the successful brain regeneration methods that are discovered will be used in clinical trials with persons with brain injury by the fifth year of the program. The DLF lauds ARPA-H for initiating this program. We are discussing possibilities for playing a supportive role as proposals develop. This exciting program is congruent with the original overarching goals of the DLF and confirms the validity of its mission.
Photo of Dr. Justin Burrell
By Dan Lewis Foundation July 31, 2025
Dr. Burrell is a translational neuroengineer in the Departments of Neurosurgery and Oral & Maxillofacial Surgery at the University of Pennsylvania. His research integrates advanced neural repair strategies with clinical translation, focusing on axon protection, nerve fusion, and engineered neural tissue for neurotrauma recovery. Dr. Burrell has led the development of multiple first-in-field innovations—including the first large-animal model of nerve fusion, delayed axonal fusion protocols, and the first orally active axonal protectants—positioning him as a recognized leader in regenerative neurotechnologies. He is co-founder of Neurostorative LLC and plays a central role in several other platforms aimed at neural reconnection, long-term preservation, and bio-integrated prosthetic systems.